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TÓM TẮT 

Máy véc-tơ tựa (SVM) là một kĩ thuật phân lớp rất phổ biến và được vận dụng vào 

rất nhiều các lĩnh vực khác nhau của đời sống. Nhận thấy đây là một vấn đề thiết 

thực nên chúng tôi đã lựa chọn để nghiên cứu, nhằm mục tiêu tìm thêm các ứng 

dụng thực tiễn của thuật toán và các cải tiến tốt hơn. Một vài các cải tiến tiêu biểu 

như: máy véc-tơ tựa xấp xỉ (PSVM), máy véc-tơ tựa xấp xỉ thông qua trị riêng suy 

rộng (GEPSVM), máy véc-tơ tựa song sinh (TWSVM). SVM và TWSVM đều được 

giải dựa vào bài toán đối ngẫu Lagrange nhưng TWSVM dùng hai siêu phẳng để 

tách hai lớp dữ liệu. Bài báo này nhằm trình bày cơ sở toán học của PSVM, 

GEPSVM và TWSVM, bên cạnh đó chúng tôi đã cài đặt thuật toán TWSVM bằng 

ngôn ngữ lập trình Python để đánh giá hiệu quả của TWSVM so với SVM tiêu 

chuẩn.  

Từ khóa: Máy véc-tơ tựa, Máy véc-tơ tựa song sinh. 

 

1. GIỚI THIỆU  

Trong bài báo này chúng tôi đề cập đến nguồn gốc toán học của các cải tiến của 

Support Vector Machine (SVM) [1, 2, 3, 9] là Proximal Support Vector Machine (PSVM) 

[6], Multisurface proximal support vector classification via generalized eigenvalues 

(GEPSVM) [4] và Twin Support Vector Machine (TWSVM) [5], trong đó đặc biệt chú 

trọng đến TWSVM. Như đã biết, SVM tiêu chuẩn [3] chú trọng đến việc tối đa lề giữa 

hai lớp dữ liệu và tối thiểu lỗi phân loại, bằng cách giải bải toán tối ưu dạng:  

{
𝑓(𝑥) → min
𝑥 ∈ 𝑀.

 

Nghiệm tìm được là một siêu phẳng tách hai lớp dữ liệu với lề lớn nhất.  

TWSVM [5] tìm hai siêu phẳng không nhất thiết song song, cụ thể ta giải hai bài 

toán quy hoạch toàn phương (Quadratic Programming (QP)), còn trong SVM ta chỉ giải 

một bài toán QP. Điều thú vị ở chỗ, tuy giải hai bài toán QP nhưng tốc độ của TWSVM 
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lại nhanh hơn SVM tiêu chuẩn. Để hiểu tường minh hơn về hiệu quả của TWSVM so 

với SVM tiêu chuẩn độc giả nên tham khảo về cài đặt thuật toán đã được chúng tôi 

đưa lên https://github.com/makeho8/python/blob/master. 

 

2. ĐÁNH GIÁ CÁC NGHIÊN CỨU LIÊN QUAN 

Có thể kể đến các nghiên cứu đã được công bố trước TWSVM [5] như: máy véc-

tơ tựa xấp xỉ (PSVM) [6], máy véc-tơ tựa xấp xỉ thông qua trị riêng suy rộng (GEPSVM) 

[4].  

PSVM [6] tiếp cận tương tự như SVM tiêu thuẩn [3] bằng cách tìm siêu phẳng 

tách với lề lớn nhất, nhưng PSVM chú trọng tới việc tìm hai siêu phẳng song song 

tương ứng với hai lớp dữ liệu sao cho các điểm trên mỗi lớp dữ liệu tụ tập quanh nó, 

và hai siêu phẳng này tạo ra lề lớn nhất có thể. Ưu điểm của PSVM là giải bài toán QP 

lồi chặt với ràng buộc đẳng thức, điều này tăng tính ổn định của thuật toán. Tuy nhiên 

việc tìm hai siêu phẳng song song dẫn tới khả năng mô phỏng dữ liệu của PSVM kém 

hơn TWSVM.  

Tiếp cận bài toán phân loại hai lớp dữ liệu dưới một góc nhìn khác, 

Mangasarian và Wild đã tìm hai siêu phẳng không nhất thiết song song mà mỗi lớp dữ 

liệu là gần với một trong hai siêu phẳng và xa lớp còn lại nhất có thể (GEPSVM [4]). 

Hai siêu phẳng này ứng với các vector riêng của các trị riêng nhỏ nhất trong hai bài 

toán tìm trị riêng suy rộng. Vì GEPSVM giải hai bài toán tối ưu không có ràng buộc 

nên độ chính xác và khả năng mô phỏng dữ liệu kém hơn TWSVM. 

TWSVM [5] cũng có cách tiếp cận tương tự GEPSVM [4], với mục đích là tìm 

hai siêu phẳng không nhất thiết song song. Tuy nhiên công thức toán học của TWSVM 

là hoàn toàn khác với GEPSVM. TWSVM hiệu quả hơn về thời gian tính toán, hơn nữa 

bên cạnh việc phân loại dữ liệu, TWSVM còn có khả năng mô phỏng dữ liệu tốt hơn 

PSVM và GEPSVM, trong khi SVM chỉ thực hiện nhiệm vụ phân loại. 

 

3. MÁY VÉC-TƠ TỰA XẤP XỈ  

Giả sử tập mẫu cần phân loại gồm 𝑚 điểm được kí hiệu bởi 𝑚 vector hàng 

𝐴𝑖 ,   𝑖 = 1, . . . , 𝑚 trong không gian ℝ𝑛. Ở đây 𝐴𝑖 = (𝐴𝑖1, . . . ,  𝐴𝑖𝑛)𝑇, đặt 𝑦𝑖 ∈ {1, −1} là lớp 

của điểm dữ liệu thứ 𝑖. 

Trường hợp hai lớp tách được tuyến tính, SVM tiêu chuẩn tìm véc-tơ cột 𝑤 ∈

ℝ𝑛 và 𝑏 ∈ ℝ sao cho 

{
𝐴𝑖𝑤 + 𝑏 ≥ 1; 𝑦𝑖 = 1,
𝐴𝑖𝑤 + 𝑏 ≤ −1; 𝑦𝑖 = −1.
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Siêu phẳng tách 𝑥𝑇𝑤 + 𝑏 = 0 nằm giữa hai siêu phẳng tựa 𝑥𝑇𝑤 + 𝑏 = 1 và 

𝑥𝑇𝑤 + 𝑏 = −1. Hai lớp dữ liệu được tách với lề mỗi phía là 
1

‖𝑤‖2
. Những điểm dữ liệu 

nằm trên các siêu phẳng tựa được gọi là các véc-tơ tựa. Vì muốn có lề cực đại ta đưa 

đến bài toán tối ưu sau:  

{
min
𝑤,𝑏

1

2
𝑤𝑇𝑤                                             

𝐴𝑖𝑤 + 𝑏 ≥ 1;     𝑦𝑖 = 1,    
𝐴𝑖𝑤 + 𝑏 ≤ −1;   𝑦𝑖 = −1.

 

Trường hớp hai lớp gần tách được tuyến tính. Lúc đó có những điểm vi phạm 

bất đẳng thức ràng buộc. Ta cần giảm nhẹ ràng buộc bằng cách thêm vào các biến phụ 

𝑞 ∈ ℝ𝑚 

{

𝐴𝑖𝑤 + 𝑏 + 𝑞𝑖 ≥ 1; 𝑦𝑖 = 1,
𝐴𝑖𝑤 + 𝑏 − 𝑞𝑖 ≤ −1; 𝑦𝑖 = −1,
𝑞𝑖 ≥ 0; 𝑖 = 1, . . . , 𝑚.

 

Ta coi 𝑞𝑖 như là biến lỗi tương ứng với điểm dữ liệu thứ 𝑖. Nếu bài toán là tách 

được tuyến tính thì 𝑞𝑖 = 0 với mọi 𝑖, tức là không có điểm nào vi phạm ràng buộc. Gọi 

𝐷 ∈ ℝ𝑚×𝑚 là ma trận đường chéo nhận giá trị 1 hoặc -1 tương ứng với lớp của điểm dữ 

liệu 𝐴𝑖 ,    𝑖 = 1, . . . , 𝑚. Cuối cùng ta có bài toán SVM lề mềm như sau: 

{
𝑚𝑖𝑛
𝑤,𝑏,𝑞

  𝑐𝑒𝑇𝑞 +
1

2
𝑤𝑇𝑤                        

𝐷(𝐴𝑤 + 𝑒𝑏) + 𝑞 ≥ 𝑒; 
𝑞 ≥ 0                               

(1) 

ở đây 𝑐 là hệ số phạt các điểm vi phạm ứng với 𝑞𝑖 > 0, hơn nữa chọn 𝑐 hợp lý còn để 

cân bằng giữa việc tối thiểu lỗi và tối đa lề, 𝑒 ∈ ℝ𝑚 là véc-tơ với tất cả các thành phần 

bằng 1. 

Ý tưởng của PSVM [6] xuất phát từ việc đưa bài toán (1) về dạng: 

{
𝑚𝑖𝑛
𝑤,𝑏,𝑞

  𝑐
1

2
‖𝑞‖2 +

1

2
(𝑤𝑇𝑤 + 𝑏)       

𝐷(𝐴𝑤 + 𝑒𝑏) + 𝑞 ≥ 𝑒; 
(2) 

Như vậy, trong hàm mục tiêu của (2), 𝑐
1

2
‖𝑞‖2 thay cho 𝑐𝑒𝑇𝑞 và việc tối đa lề 

2

‖𝑤‖2
 được thay bởi 

2

‖
𝑤
𝑏

‖
2

. Chú ý rằng ràng buộc 𝑞 ≥ 0 được lược bỏ. Điều này là bởi nếu 

tồn tại 𝑞𝑖 < 0 thì ta có thể thay bởi 𝑞𝑖 = 0 mà không vi phạm ràng buộc và có giá trị 

hàm mục tiêu bé hơn. Hơn nữa, PSVM [6] thay thế ràng buộc bất đẳng thức trong (2) 

thành ràng buộc đẳng thức: 

{
𝑚𝑖𝑛
𝑤,𝑏,𝑞

  𝑐
1

2
‖𝑞‖2 +

1

2
(𝑤𝑇𝑤 + 𝑏)       

𝐷(𝐴𝑤 + 𝑒𝑏) + 𝑞 = 𝑒; 
(3) 
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Trong (2) những điểm vi phạm ràng buộc tương ứng với 𝑞𝑖 > 0, những điểm nằm trên 

hai siêu phẳng tựa hoặc không vi phạm tương ứng với 𝑞𝑖 = 0. Như vậy hai siêu phẳng 

tựa gần như giới hạn hai lớp dữ liệu về hai phía. 

 

Hình 1: SVM tiêu chuẩn. 

Từ ràng buộc đẳng thức trong (3) ta thấy rằng, những điểm vi phạm ràng buộc 

tương ứng với 𝑞𝑖 > 0, những điểm nằm trên hai lề tương ứng với 𝑞𝑖 = 0 còn những 

điểm không vi phạm tương ứng với 𝑞𝑖 < 0. Như vậy để tối thiểu hàm mục tiêu thì hai 

lề sẽ nằm xuyên vào giữa hai lớp dữ liệu tương ứng. Hai lề này được coi như các siêu 

phẳng xấp xỉ mà các điểm dữ liệu của lớp tương ứng tụ tập xung quanh chúng. Mặt 

khác, các siêu phẳng xấp xỉ này được đẩy ra xa nhau nhất có thể bởi số hạng (𝑤𝑇𝑤 +

𝑏2) trong hàm mục tiêu. Siêu phẳng tách 𝑥𝑇𝑤 + 𝑏 = 0 nằm giữa hai siêu phẳng xấp xỉ 

song song. 

 

Hình 2: PSVM 

Bài toán (3) là bài toán quy hoạch toàn phương lồi chặt với hàm Lagrange: 

𝐿(𝑤, 𝑏, 𝑞, 𝜆) = 𝑐
1

2
‖𝑞‖2 +

1

2
‖

𝑤
𝑏

‖
2

− 𝜆𝑇(𝐷(𝐴𝑤 + 𝑒𝑏) + 𝑞 − 𝑒),         (4) 



 

 

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế Tập 17, Số 1 (2020) 

5 

với 𝜆 ∈ ℝ𝑚 là nhân tử Lagrange. Bằng cách giải hệ điều kiện K.K.T [7] ta thu được 

nghiệm 𝜆 = (
𝐼

𝑐
+ 𝐻𝐻𝑇)

−1
𝑒, với 𝐻 = 𝐷[𝐴   𝑒]. Vì ma trận lấy nghịch đảo ở đây có số 

chiều 𝑚 × 𝑚, thời gian tính toán sẽ rất lâu nếu bài toán có nhiều điểm dữ liệu. Thông 

thường số chiều dữ liệu 𝑛 là nhỏ hơn rất nhiều so với số điểm dữ liệu 𝑚. Bằng cách sử 

dụng công thức Sherman-Morrison-Woodbury [8, tr50] đưa về tính ma trận nghịch đảo 

có số chiều là (𝑛 + 1) × (𝑛 + 1) ta có: 

𝜆 = 𝑐 (𝐼 − 𝐻 (
𝐼

𝑐
+ 𝐻𝐻𝑇)

−1

𝐻𝑇) 𝑒.        (5) 

Chú ý rằng, trong SVM các véc-tơ tựa tương ứng với thành phần khác không 

của nhân tử Lagrange, còn trong PSVM, nhân tử Lagrange 𝜆 = 𝑐𝑞, nhưng véc-tơ lỗi 𝑞 

có các thành phần hầu hết khác không. Thực tế chỉ cần nhiều nhất 𝑛 + 1 điểm dữ liệu 

độc lập tuyến tính để xác định (𝑤,  𝑏) ∈ ℝ𝑛+1. Ta gọi những điểm 𝐴𝑖 tương ứng với 

|𝑞𝑖| < 𝜀 nào đó là các 𝜀-vector tựa. Có thể chọn 𝜀 đủ nhỏ để chỉ khoảng 1% số điểm dữ 

liệu là các 𝜀-vector tựa. 

 

4. MÁY VÉC-TƠ TỰA XẤP XỈ THÔNG QUA CÁC TRỊ RIÊNG SUY RỘNG 

Quay lại với bài toán phân loại nhị phân với tập dữ liệu gồm 𝑚 điểm trong 

không gian thực ℝ𝑛. Giả sử lớp 1 gồm 𝑚1 điểm được biểu diễn bởi ma trận 𝐴 ∈ ℝ𝑚1×𝑛 , 

lớp 2 gồm 𝑚2 điểm được biểu diễn bởi ma trận 𝐵 ∈ ℝ𝑚2×𝑛, với 𝑚1 + 𝑚2 = 𝑚. PSVM sẽ 

tìm hai siêu phẳng song song với lề lớn nhất. GEPSVM [4] có cách tiếp cận khác là tìm 

hai siêu phẳng không nhất thiết song song, mỗi siêu phẳng là gần nhất có thể với một 

lớp và xa nhất có thể với lớp còn lại. 

𝑥𝑇𝑤(1) + 𝑏(1) = 0;  𝑥𝑇𝑤(2) + 𝑏(2) = 0.         (6) 

Ở đây siêu phẳng 1 của (6) gần nhất với các điểm của lớp 1 và xa nhất với các 

điểm thuộc lớp 2, điều tương tự xảy ra với siêu phẳng 2. Việc tìm siêu phẳng 1 tương 

đương với bài toán tối ưu sau: 

min
(𝑤,𝑏)≠0

‖𝐴𝑤 + 𝑒1𝑏‖2/ ‖[
𝑤
𝑏

]‖
2

‖𝐵𝑤 + 𝑒2𝑏‖2/ ‖[
𝑤
𝑏

]‖
2 ,        (7) 

với 𝑒1 ∈ ℝ𝑚1 ,   𝑒2 ∈ ℝ𝑚2 là các véc-tơ gồm tất cả tọa độ bằng 1, ‖⋅‖ là chuẩn 𝐿2. Ta thấy 

rằng tử số chính là tổng của bình phương khoảng cách tất cả các điểm thuộc lớp 1 tới 

siêu phẳng 1, mẫu số là tổng của bình phương khoảng cách tất cả các điểm thuộc lớp 2 

tới siêu phẳng 1. Đơn giản hóa (7) cho ta: 

min
(𝑤,𝑏)≠0

‖𝐴𝑤 + 𝑒1𝑏‖2

‖𝐵𝑤 + 𝑒2𝑏‖2
,        (8) 
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Để chính quy hóa (8), ta thêm số hạng chính quy Tikhonov [9] vào tử số, bài 

toán trở thành: 

min
(𝑤,𝑏)≠0

‖𝐴𝑤 + 𝑒1𝑏‖2 + 𝛿 ‖[
𝑤
𝑏

]‖
2

‖𝐵𝑤 + 𝑒2𝑏‖2
,    𝛿 > 0    (9) 

Đặt 

{
𝐺 ≔ [𝐴   𝑒1]𝑇[𝐴   𝑒1] + 𝛿𝐼,

𝐻 ≔ [𝐵   𝑒2]𝑇[𝐵   𝑒2],    𝑧 ≔ [
𝑤
𝑏

] ,
 

bài toán tối ưu (9) trở thành: 

min
𝑧≠0

𝑟(𝑧) =
𝑧𝑇𝐺𝑧

𝑧𝑇𝐻𝑧
,       (10) 

ở đây G, H là các ma trận đối xứng trong 𝑅(𝑛+1)×(𝑛+1). Ta có  

∇𝑟(𝑧) = 2
(𝐺𝑧 − 𝑟(𝑧)𝐻𝑧)

𝑧𝑇𝐻𝑧
,       (11) 

hàm 𝑟(𝑧) được gọi là thương Rayleigh [1, tr357]. Hàm này có tính chất 𝑟(𝜆𝑧) =

𝑟(𝑧),    ∀𝑧,    ∀𝜆 ≠ 0 do đó (10) tương đương min
𝑧∈𝑆(0, 1)

𝑟(𝑧). Vì 𝑟(𝑧) liên tục trên tập compact 

𝑆(0,  1) nên đạt cực tiểu và cực đại trên đó. Giả sử 𝑟(𝑧) đạt cực tiểu và cực đại tương 

ứng tại 𝑧min, 𝑧max. Lúc đó 𝛻𝑟(𝑧min) = 𝛻𝑟(𝑧max) = 0 ⇒ 𝐺𝑧min − 𝑟(𝑧min)𝐻𝑧min = 0 và 

𝐺𝑧max − 𝑟(𝑧max)𝐻𝑧max = 0. Như vậy, 𝑟(𝑧min),   𝑟(𝑧max) ∈ [𝜆1,  𝜆𝑛+1] ⇒ 𝑟(𝑧) ∈ [𝜆1,  𝜆𝑛+1] 

khi 𝑧 ∈ 𝑆(0,   1), ở đây 𝜆1,   𝜆𝑛+1 tương ứng là trị riêng nhỏ nhất và lớn nhất của bài toán 

trị riêng suy rộng:  

𝐺𝑧 = 𝜆𝐻𝑧,     𝑧 ≠ 0.       (12) 

Giả sử rằng các cột của ma trận [𝐵   𝑒2] là độc lập tuyến tính, nghiệm toàn cục 

của (10) là véc-tơ riêng của (12) tương ứng với trị riêng nhỏ nhất 𝜆1. Ký hiệu véc-tơ 

riêng này là 𝑧(1) thì [𝑤(1)𝑇    𝑏(1)]
𝑇

= 𝑧(1) xác định siêu phẳng 1 trong (6). 

Bằng cách làm tương tự ta sẽ có được siêu phẳng 2. 

 

5. MÁY VÉC-TƠ TỰA SONG SINH 

5.1 Trường hợp hai lớp dữ liệu gần tách được tuyến tính 

Với bài toán như trong mục 4. Ý tưởng của TWSVM cho bài toán phân loại nhị 

phân cũng là đi tìm hai siêu phẳng không song song như GEPSVM, nhưng về mặt 

công thức thì hoàn toàn khác. 



 

 

TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học, ĐH Huế Tập 17, Số 1 (2020) 

7 

 

Hình 3: SVM và TWSVM 

Thực tế, mỗi bài toán QP trong TWSVM là tương tự như SVM, tuy nhiên không 

phải tất cả các điểm dữ liệu đều xuất hiện trong ràng buộc cùng một lúc. Ta sẽ thu 

được hai siêu phẳng trong TWSVM bằng cách giải hai bài toán QP sau: 

(𝑇𝑊𝑆𝑉𝑀1)    {
min

𝑤(1),𝑏(1),𝑞

1

2
(𝐴𝑤(1) + 𝑒1𝑏(1))

𝑇
(𝐴𝑤(1) + 𝑒1𝑏(1)) + 𝑐1𝑒2

𝑇𝑞

−(𝐵𝑤(1) + 𝑒2𝑏(1)) + 𝑞 ≥ 𝑒2,    𝑞 ≥ 0,

           (13) 

và 

(𝑇𝑊𝑆𝑉𝑀2)    {
min

𝑤(2),𝑏(2),𝑞

1

2
(𝐵𝑤(2) + 𝑒2𝑏(2))

𝑇
(𝐵𝑤(2) + 𝑒2𝑏(2)) + 𝑐2𝑒1

𝑇𝑞

−(𝐴𝑤(2) + 𝑒1𝑏(2)) + 𝑞 ≥ 𝑒1,    𝑞 ≥ 0.

           (14) 

Ở đây 𝑐1,   𝑐2 là các hệ số phạt để cân bằng sự vi phạm và tổng khoảng cách bình 

phương trong mỗi bài toán, 𝑒1 ∈ 𝑅𝑚1 ,   𝑒2 ∈ 𝑅𝑚2 là các vector toàn 1. Thuật toán đi tìm 

hai siêu phẳng đại diện cho hai lớp. 

Trước hết ta xét bài toán (13). Ta thấy rằng, biểu thức thứ nhất trong hàm mục 

tiêu của (13) chính là tổng khoảng cách bình phương của các điểm thuộc lớp 1 tới siêu 

phẳng 1. Ràng buộc là các điểm thuộc lớp -1 giữ khoảnh cách ít nhất bằng 1 đối với 

siêu phẳng 1. Biến phụ 𝑞 > 0 tại các điểm vi phạm ràng buộc và bằng 0 tại các điểm 

không vi phạm. Hàm Lagrange tương ứng với bài toán TWSVM1 (13) được cho bởi: 

𝐿(𝑤(1), 𝑏(1), 𝑞, 𝛼, 𝛽) =
1

2
(𝐴𝑤(1) + 𝑒1𝑏(1))

𝑇
(𝐴𝑤(1) + 𝑒1𝑏(1)) + 𝑐1𝑒2

𝑇𝑞 

                                                                      −𝛼𝑇(−(𝐵𝑤(1) + 𝑒2𝑏(1)) + 𝑞 − 𝑒2) − 𝛽𝑇𝑞,             (15) 

với 𝛼 = (𝛼1, . . . , 𝛼𝑚2
)

𝑇
,   𝛽 = (𝛽1, . . . , 𝛽𝑚2

)
𝑇

 là vector nhân tử Lagrange. Giải hệ điều kiện 

cần và đủ K.K.T của bài toán ta có: 

0 ≤ 𝛼 ≤ 𝑐1𝑒2.          (16) 

và 

[
𝐴𝑇

𝑒1
𝑇 ] [𝐴   𝑒1] [𝑤(1)

𝑏(1)
] + [

𝐵𝑇

𝑒2
𝑇 ] 𝛼 = 0.         (17) 

Đặt 
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𝐻 = [𝐴   𝑒1],    𝐺 = [𝐵   𝑒2],    𝑢 = [𝑤(1)

𝑏(1)
],         (18) 

(17) có thể viết lại thành 

𝐻𝑇𝐻𝑢 + 𝐺𝑇𝛼 = 0, 

tức là 

𝑢 = −(𝐻𝑇𝐻)−1𝐺𝑇𝛼.          (19) 

Để đảm bảo tồn tại ma trận nghịch đảo (𝐻𝑇𝐻)−1 ta thêm số hạng chính quy 

𝜖𝐼,    𝜖 > 0 như trong [2], với 𝐼 là ma trận đơn vị có số chiều thích hợp, (19) trở thành 

𝑢 = −(𝐻𝑇𝐻 + 𝜖𝐼)−1𝐺𝑇𝛼.          (20) 

Tuy nhiên, trong phần sau của bài ta vẫn sử dụng (19) để thuận tiện cho quá 

trình tìm hiểu bài toán, còn khi lập trình thuật toán ta sẽ sử dụng công thức (20). Thay 

vào hàm Lagrange ta thu được bài toán đối ngẫu của TWSVM1 như sau: 

(𝐷𝑇𝑊𝑆𝑉𝑀1)     {
max

𝛼
    𝑒2

𝑇𝛼 −
1

2
𝛼𝑇𝐺(𝐻𝑇𝐻)−1𝐺𝑇𝛼

0 ≤ 𝛼 ≤ 𝑐1𝑒2.
          (21) 

Bằng cách tương tự, ta xét bài toán TWSVM2 và thu được bài toán đối ngẫu 

sau: 

(𝐷𝑇𝑊𝑆𝑉𝑀2)     {
max

𝛾
    𝑒1

𝑇𝛾 −
1

2
𝛾𝑇𝐻(𝐺𝑇𝐺)−1𝐻𝑇𝛾

0 ≤ 𝛾 ≤ 𝑐2𝑒1.
          (22) 

và vector 𝑣 = [𝑤(2)

𝑏(2)
] được cho bởi 

𝑣 = (𝐺𝑇𝐺)−1𝐻𝑇𝛾.          (23) 

Hai ma trận 𝐻𝑇𝐻 và 𝐺𝑇𝐺 cùng có cỡ (𝑛 + 1) × (𝑛 + 1), trong thực tế số chiều 𝑛 

là nhỏ hơn nhiều so với số phần tử của hai lớp dữ liệu. Hai siêu phẳng tách đạt được 

là: 

𝑥𝑇𝑤(1) + 𝑏(1) = 0,   𝑥𝑇𝑤(2) + 𝑏(2) = 0.         (24) 

Với một điểm dữ liệu mới 𝑥 ∈ ℝ𝑛 ta tính khoảng cách vuông góc từ 𝑥 tới hai 

siêu phẳng, 𝑥 gần siêu phẳng của lớp nào hơn thì thuộc về lớp đó. 

Từ hệ điều kiện K.K.T ta thấy rằng, các điểm thuộc lớp -1 tương ứng với 0 < 𝛼𝑖 <

𝑐1,    (𝑖 = 1, . . . , 𝑚2) nằm trên siêu phẳng 𝑥𝑇𝑤(1) + 𝑏(1) = −1, những vector thuộc lớp -1 

này là những vector tựa của lớp 1. Điều tương tự xảy ra với bài toán TWSVM2. 

Đánh giá độ phức tạp: Quan sát hai bài toán đối ngẫu (21) và (22) thấy rằng các 

ma trận vuông 𝐺(𝐻𝑇𝐻)−1𝐺𝑇  và 𝐻(𝐺𝑇𝐺)−1𝐻𝑇 có cỡ xấp xỉ 
𝑚

2
. Trong bài toán đối ngẫu 

của SVM [3], ma trận vuông có cỡ 𝑚. Như vậy nếu ta coi độ phức tạp của SVM là 𝑚3 
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thì độ phức tạp của TWSVM là xấp xỉ 2(
𝑚

2
)3, qua đó thấy rằng tốc độ tính toán của 

TWSVM là nhanh hơn SVM xấp xỉ 4 lần. 

 

5.2 TRƯỜNG HỢP PHI TUYẾN 

Khi hai lớp dữ liệu là không tách được tuyến tính, tương tự như SVM tiêu 

chuẩn, ta sẽ sử dụng kỹ thuật kernel. Hai mặt phân loại sẽ có dạng: 

𝐾(𝑥𝑇 ,  𝐶𝑇)𝑤(1) + 𝑏(1) = 0,     𝐾(𝑥𝑇 ,  𝐶𝑇)𝑤(2) + 𝑏(2) = 0,          (25) 

với 𝐶 = [
𝐴
𝐵

] và 𝐾 là một kernel nào đó. Bài toán tối ưu có dạng như sau: 

(𝐾𝑇𝑊𝑆𝑉𝑀1)    {
min

𝑤(1),𝑏(1),𝑞

1

2
‖𝐾(𝐴, 𝐶𝑇)𝑤(1) + 𝑒1𝑏(1)‖

2
+ 𝑐1𝑒2

𝑇𝑞                               

−(𝐾(𝐵, 𝐶𝑇)𝑤(1) + 𝑒2𝑏(1)) + 𝑞 ≥ 𝑒2,    𝑞 ≥ 0.

(26) 

Hàm Lagrange của bài toán: 

𝐿(𝑤(1), 𝑏(1), 𝑞, 𝛼, 𝛽) =
1

2
‖𝐾(𝐴, 𝐶𝑇)𝑤(1) + 𝑒1𝑏(1)‖

2
+ 𝑐1𝑒2

𝑇𝑞 

                                                                        −𝛼𝑇(−(𝐾(𝐵, 𝐶𝑇)𝑤(1) + 𝑒2𝑏(1)) + 𝑞 − 𝑒2)

− 𝛽𝑇𝑞,    (27) 

Dựa vào hệ điều kiện K.K.T của bài toán ta có: 

[
𝐾(𝐴, 𝐶𝑇)𝑇

𝑒1
𝑇 ] [𝐾(𝐴, 𝐶𝑇)   𝑒1] [𝑤(1)

𝑏(1)
] + [

𝐾(𝐵,  𝐶𝑇)𝑇

𝑒2
𝑇 ] 𝛼 = 0.          (28) 

Đặt 𝑆 = [𝐾(𝐴,  𝐶𝑇)   𝑒1],    𝑅 = [𝐾(𝐵,  𝐶𝑇)   𝑒2],    𝑧(1) = [𝑤(1)

𝑏(1)
], 

biểu thức (28) có thể được viết lại thành 

𝑆𝑇𝑆𝑧(1) + 𝑅𝑇𝛼 = 0,   hay  𝑧(1) = −(𝑆𝑇𝑆)−1𝑅𝑇𝛼.          (29) 

Bài toán đối ngẫu của KTWSVM1 là: 

(𝐾𝐷𝑇𝑊𝑆𝑉𝑀1)     {
max

𝛼
    𝑒2

𝑇𝛼 −
1

2
𝛼𝑇𝑅(𝑆𝑇𝑆)−1𝑅𝑇𝛼

0 ≤ 𝛼 ≤ 𝑐1𝑒2.
          (30) 

Tương tự ta có bài toán tối ưu KTWSVM2 và KDTWSVM2 cho mặt 

𝐾(𝑥𝑇 ,  𝐶𝑇)𝑤(2) + 𝑏(2) = 0 như sau: 

(𝐾𝑇𝑊𝑆𝑉𝑀2)    {
min

𝑤(2),𝑏(2),𝑞

1

2
‖𝐾(𝐵, 𝐶𝑇)𝑤(2) + 𝑒2𝑏(2)‖

2
+ 𝑐2𝑒1

𝑇𝑞                               

(𝐾(𝐴, 𝐶𝑇)𝑤(2) + 𝑒1𝑏(2)) + 𝑞 ≥ 𝑒1,    𝑞 ≥ 0.

(31) 

(𝐾𝐷𝑇𝑊𝑆𝑉𝑀2)     {
max

𝛾
    𝑒1

𝑇𝛾 −
1

2
𝛾𝑇𝑆(𝑅𝑇𝑅)−1𝑆𝑇𝛾

0 ≤ 𝛾 ≤ 𝑐2𝑒1.
          (32) 
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Nghiệm 𝑧(2) = [𝑤(2)

𝑏(2)
] = (𝑅𝑇𝑅)−1𝑆𝑇𝛾. Bằng cách sử dụng công thức Sherman-

Morrison-Woodbury [8] cho ma trận nghịch đảo, ta không phải tính nghịch đảo của 

ma trận 𝑚 + 1 chiều như trên mà chỉ phải tính nghịch đảo của ma trận 𝑚1 chiều và 𝑚2 

chiều. 

 

6. CÀI ĐẶT THUẬT TOÁN MÁY VÉC-TƠ TỰA SONG SINH VÀ ÁP DỤNG 

Thuật toán TWSVM: Cho 𝒎 điểm dữ liệu trong 𝑹𝒏 được biểu diễn bởi ma trận 

𝑪𝒎×𝒏. Giả sử tập dữ liệu gồm hai lớp, lớp {+} gồm 𝒎𝟏 điểm và lớp {-} gồm 𝒎𝟐 điểm tương ứng 

được biểu diễn bởi các ma trận 𝑨𝒎𝟏×𝒏 và 𝑩𝒎𝟐×𝒏. Với K là một kernel nào đó; 

i) Đặt 𝑆 = [𝐾(𝐴, 𝐶𝑇)   𝑒1],    𝑅 = [𝐾(𝐵,  𝐶𝑇)   𝑒2],    𝑧(1) = [𝑤(1)

𝑏(1)
], với 𝑒1 ∈

𝑅𝑚1×1, 𝑒2 ∈ 𝑅𝑚2×1 là các vector toàn 1.  

ii) Xác định 𝛼 thông qua (30). 

iii) Xác định 𝑧(1) thông qua (29). 

iv) Phân loại một điểm x mới dựa vào (24). 

Ngôn ngữ lập trình được sử dụng ở đây là Python 3.8.3. Trong các thư viện của 

Python mới chỉ cài đặt thuật toán SVM mặc dù đã có khá nhiều cải tiến tốt hơn, tiêu 

biểu là thuật toán TWSVM. Tôi đã cài đặt thuật toán TWSVM và đưa phần code lên 

web, bạn đọc quan tâm có thể tìm thấy tại 

https://github.com/makeho8/python/blob/master. Về cơ bản ta cần sử dụng một vài 

thư viện của Python: 

import numpy as np 

from cvxopt import matrix, solvers 

from sklearn.base import BaseEstimator 

K = matrix(GB.dot(np.linalg.inv(HA.T.dot(HA) + 0.0001*I)).dot(GB.T)) 

q = matrix((-e_B)) 

G = matrix(np.vstack((-np.eye(m_B), np.eye(m_B)))) 

h = matrix(np.vstack((np.zeros((m_B,1)), self.c*np.ones((m_B,1))))) 

solvers.options['show_progress'] = False 

sol = solvers.qp(K, q, G, h) 

alpha = np.array(sol['x']) 

self.u = -np.linalg.inv(((HA.T).dot(HA) + 0.0001*I)).dot(GB.T).dot(alpha) 
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self.b_A = self.u[-1] 

Dưới đây tôi đưa ra kết quả áp dụng thực tế để so sánh giữa TWSVM và SVM 

tiêu chuẩn. Bạn đọc có thể thấy rằng TWSVM là tốt hơn SVM cả về tốc độ tính toán và 

khả năng mô phỏng dữ liệu trong hầu hết các trường hợp. Dữ liệu được lấy từ bộ dữ 

liệu sẵn có UCI [10]. Các hệ số phạt đều được cài đặt là 1. Sử dụng đánh giá chéo 10 lần 

(10-fold cross validation) để đánh giá độ chính xác kiểm thử cho tất cả các tập dữ liệu. 

Tập dữ liệu được chia theo tỉ lệ 80/20, Laptop sử dụng là MSI Bravo15. 

Bảng 1: Độ chính xác (%) 

Dữ liệu TWSVM SVM 

CMC (1473x9) 68.253 +/- 3.065 66.977 +/- 3.921 

Heart (920x13) 79.902 +/- 5.098 80.170 +/- 4.629 

Image (2100x18) 84.345 +/- 2.306 76.905 +/- 2.564 

Hepatitis (155x19) 82.821 +/- 8.107 78.013 +/- 9.178 

Australian (689x14) 85.107 +/- 4.153 78.750 +/- 7.659 

BUPA-liver (345x6) 66.283 +/- 7.592 68.016 +/- 10.710 

Credit (690x16) 86.416 +/- 2.695 85.513 +/- 3.955 

Diabetis (768x9) 77.205 +/- 4.605 74.923 +/- 5.606 

Flare-solar (1066x13) 89.793 +/- 2.500 90.379 +/- 2.193 

German (999x25) 76.475 +/- 4.446 75.228 +/- 5.326 

Ionosphere (350x35) 89.643 +/- 5.858 86.786 +/- 4.532 

Spect (265x23) 80.649 +/- 8.113 80.152 +/- 7.070 

Bảng 2: Tốc độ chạy (ms) 

Dữ liệu TWSVM SVM 

CMC (1473x9) 269.06 3619.811 

Heart (920x13) 78.017 1297.29 

Image (2100x18) 1029.228 8343.87 

Hepatitis (155x19) 6 34 

Australian (689x14) 46.011 905.202 

BUPA-liver (345x6) 14 161 

Credit (690x16) 59.015 759.171 

Diabetis (768x9) 64.014 846.189 

Flare-solar (1066x13) 136.032 1659.375 

German (999x25) 148.032 1480.331 

Ionosphere (350x35) 14.002 167.037 

Spect (265x23) 12.002 108.023 
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7. KẾT LUẬN 

Như vậy tư tưởng toán học của máy véc-tơ tựa song sinh thực chất là tìm cách 

tách các lớp dữ liệu bởi hai siêu phẳng không nhất nhiết song song, trong đó mỗi siêu 

phẳng là gần nhất với một lớp và xa nhất có thể với lớp còn lại. Bằng một phương 

pháp nhất quán là sử dụng quy tắc nhân tử Lagrange để giải hai bài toán QP, chúng tôi 

đã trình bày cơ sở toán học của máy véc-tơ tựa song sinh và các nghiên cứu liên quan 

như, SVM tiêu chuẩn, PSVM, GEPSVM trong kĩ thuật phân lớp dữ liệu. Cùng với đó là 

cách cài đặt thuật toán máy véc-tơ tựa song sinh bằng ngôn ngữ lập trình Python, 

nhằm mục đính đánh giá về tốc độ và khả năng mô phỏng dữ liệu của TWSVM so với 

SVM tiêu chuẩn, cho các trường hợp khác nhau, từ đơn giản đến phức tạp. Cánh tiếp 

cận của TWSVM trong trường hợp phi tuyến có thể được giải quyết thông qua bài toán 

quy hoạch nửa xác định dương và quy hoạch nón bậc hai, đây là hướng nghiên cứu 

tiếp theo của chúng tôi nhằm mục đích cải tiến thuật toán. 
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ABSTRACT 

The support vector machines are popular classification technique and has been 

successfully applied to  many different areas of the life. Because this is a pratical 

problem, we chose to study, aiming to find more applications and better 

improvings. There  are some typical improvings such as Proximal Support Vector 

Machine (PSVM), Proximal Support Vector Machine Via Generalized Eigenvalues 

(GEPSVM) and Twin Support Vector Machine (TWSVM). SVM and TWSVM can 

be solved by using Lagrange duality problem, but TWSVM used two nonparallel 

hyperplanes to separate data classes. This paper airms to show mathematical 

foundation of PSVM, GEPSVM and TWSVM, and we have setted up TWSVM 

algorithm by using Python programming to evaluate effect of TWSVM compared 

to standard SVM. 

Keywords: Support vector machines, Twin support vector machines. 
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